
SBOM Generation Tools in the Python Ecosystem:
an In-Detail Analysis

Serena Cofano, PhD Student at IMT and University of Genoa
Giacomo Benedetti, Research Assistant at National Research Council of Italy

Matteo Dell’Amico, Assistant Professor at University of Genoa

General Context

Context - Software Supply Chain

Software Supply Chain (SSC) refers to the collection of devices,
systems, and people involved in creating and delivering final
software.

3

Context - Software Supply Chain Security

The security of the Software Supply Chain is the security of its components.

How do we ensure Software Supply Chain Security?

● Transparency → knowledge of the components that make the Supply
Chain → security analysis on them.

How do we get the list of components present in the Supply Chain?

● Software Bill Of Material (SBOM)

4

Context - SBOM Definition

Software Bill of Materials (SBOM) is a detailed inventory of all
components, libraries, and dependencies used in a software application,
including their versions, sources, and licenses.

5

Context - SBOM for Security

The SBOM is used as input for tools that search for vulnerabilities.

6

Context - SBOM Generation

How can be generated an SBOM?

● Statically → metadata parsing
● Dynamically → installation simulation, runtime monitoring,

instrumentation …

SBOM generation properties

Completeness: the capability to include all the components present in the
software.

Correctness: the capability to provide the exact information about them.

7

Research Problem

Research Problem

● Low quality of the generated SBOMs → lack of completeness and
correctness

● Lack of completeness → false negatives in security analysis

● Lack of correctness → false positives and false negatives in
security analysis

● Low reliability on the SBOM as a useful tool to enhance transparency
● Lack of deeper investigation of the causes that bring to lack of

completeness and correctness of the SBOM

→ Insufficient support in tools that generate the Software Bill Of
Material

9

Main Goal

Main Goal

Investigation of the issues and related causes affecting SBOM
completeness and correctness, focusing on the Python ecosystem.

In detail the contributions are :

● A study on the impact of the Python ecosystem on the
generation of SBOMs.

● A study on how the approach used by SBOM generation tools
changes the final output of the SBOM.

11

Why Python?

Flexibility → projects can be generated using different package managers
→ different files can be present in the project and dependencies can be
differently declared.

12

Why Python?

13

Why Python?

Flexibility → projects can be generated using different package managers
→ different files can be present in the project and dependencies can be
differently declared.

14

Dynamic resolution of dependencies → resolution of dependencies’
versions at installation time.

- E.g., numpy>=x.y, numpy, numpy== X.*

Methodology
How do we conduct our study?

Methodology

Analysis

- SBOM analysis →
searching for
issues

- Investigation of
the causes
- In SBOM

generation
tools

- In Python
ecosystem

Experimental Setup

- Dataset creation
- Package

managers
selection

- Dependencies
selection

- SBOM
generation tools
selection

SBOM generation

- SBOM
generation tools
execution

16

Methodology - Experimental Setup

17

SBOM Generation
Tools

● Trivy
● Syft
● Cdxgen
● Ort

Python Package
Managers

● Poetry
● Hatch
● Pip
● Pipenv
● Pdm

Methodology - Experimental Setup

18

Methodology - Analysis

● SBOM Analysis: Manual analysis on the generated SBOMs
● Completeness → search for missing dependencies
● Correctness → search for wrong dependencies (wrong or missing

version)
● Investigation of the causes:

● Code inspection of the SBOM generation tools.
● Tool documentation study.
● Community reaction assessment (e.g., Github issues analysis).
● Identification of different tools behaviours related to different

package managers.

19

Results
What do we get?

Results - Issues

Version Management Issues
Process of assigning a version to a package. If the version is explicit, the
SBOM generation tools should detect it; otherwise, they should determine
it.

Metadata Files Handling Issues
Metadata files management includes identifying them, parsing them, or
using them to install dependencies in a simulated environment.

21

Results - Causes
Version Management Issues

Completeness
- Missing implementation of

solving techniques for unpinned
dependencies.

22

Correctness
- Inaccurate “guessing”

techniques for versions.

For instance:
- In Trivy and Syft, if a dependency

is declared without version, it is
ignored.

For instance:
- Syft converts >= in ==
- Cdxgen converts constrained

dependencies with >=, in
dependencies with latest
version.

Results - Causes
Metadata Files Management Issues

Completeness
- Missing implementation for

parsing a metadata file (i.e.,
Pyproject.toml,
requirements.txt, lockfiles).

- Missing metadata file in the
Python project.

23

Correctness
- Incorrect parsing of metadata

files.
- Not standardized format for

metadata files.

For instance:
- Hatch does not provide a lock

file.
- Pdm.lock is parsed only by few

tools

For instance:
- Pipfile.lock does not report in a

specific field the version of the
remote dependency

Discussion
What can we conclude?

Conclusion and Discussion

25

Defects in SBOM
generation tools

- Inaccurate version-
solving techniques

- Missing parsing of
pyproject.toml

- No warnings about
incompleteness and
incorrectness

Lack of standard in
Python:

- Unpredictable
structure of the
projects

- Unpredictable
structure of the
metadata files

Recommendations

● For the Python Ecosystem:

→ It should push for initiatives proposing standards.

● For the SBOM generation tool’s developers:

→ SBOM generation tools are required to consider the

new Python standard build interface by parsing the

pyproject.toml file.

26

Thank you for your attention

Questions?

	Slide 1: SBOM Generation Tools in the Python Ecosystem: an In-Detail Analysis
	Slide 2: General Context
	Slide 3: Context - Software Supply Chain
	Slide 4: Context - Software Supply Chain Security
	Slide 5: Context - SBOM Definition
	Slide 6: Context - SBOM for Security
	Slide 7: Context - SBOM Generation
	Slide 8: Research Problem
	Slide 9: Research Problem
	Slide 10: Main Goal
	Slide 11: Main Goal
	Slide 12: Why Python?
	Slide 13: Why Python?
	Slide 14: Why Python?
	Slide 15: Methodology How do we conduct our study?
	Slide 16: Methodology
	Slide 17: Methodology - Experimental Setup
	Slide 18: Methodology - Experimental Setup
	Slide 19: Methodology - Analysis
	Slide 20: Results What do we get?
	Slide 21: Results - Issues
	Slide 22: Results - Causes Version Management Issues
	Slide 23: Results - Causes Metadata Files Management Issues
	Slide 24: Discussion What can we conclude?
	Slide 25: Conclusion and Discussion
	Slide 26: Recommendations
	Slide 27

