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General Context



Context - Software Supply Chain

Software Supply Chain (SSC) refers to the collection of devices, 
systems, and people involved in creating and delivering final 
software.
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Context - Software Supply Chain Security

The security of the Software Supply Chain is the security of its components.

How do we ensure Software Supply Chain Security?

● Transparency → knowledge of the components that make the Supply 
Chain → security analysis on them.

How do we get the list of components present in the Supply Chain?

● Software Bill Of Material (SBOM)
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Context - SBOM Definition

Software Bill of Materials (SBOM) is a detailed inventory of all 
components, libraries, and dependencies used in a software application, 
including their versions, sources, and licenses. 
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Context - SBOM for Security

The SBOM is used as input for tools that search for vulnerabilities.
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Context - SBOM Generation

How can be generated an SBOM?

● Statically → metadata parsing
● Dynamically → installation simulation, runtime monitoring, 

instrumentation …

SBOM generation properties 

Completeness: the capability to include all the components present in the 
software.

Correctness: the capability to provide the exact information about them.
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Research Problem



Research Problem

● Low quality of the generated SBOMs → lack of completeness and 
correctness

● Lack of completeness → false negatives in security analysis

● Lack of correctness → false positives and false negatives in 
security analysis

● Low reliability on the SBOM as a useful tool to enhance transparency
● Lack of deeper investigation of the causes that bring to lack of 

completeness and correctness of the SBOM

→ Insufficient support in tools that generate the Software Bill Of 
Material
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Main Goal



Main Goal

Investigation of the issues and related causes affecting SBOM 
completeness and correctness, focusing on the Python ecosystem.

In detail the contributions are :

● A study on the impact of the Python ecosystem on the
generation of SBOMs. 

● A study on how the approach used by SBOM generation tools
changes the final output of the SBOM.
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Why Python?

Flexibility → projects can be generated using different package managers
→ different files can be present in the project and dependencies can be 
differently declared.
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Why Python?
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Why Python?

Flexibility → projects can be generated using different package managers
→ different files can be present in the project and dependencies can be 
differently declared.
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Dynamic resolution of dependencies → resolution of dependencies’ 
versions at installation time.

- E.g., numpy>=x.y, numpy, numpy== X.* 



Methodology
How do we conduct our study?



Methodology

Analysis

- SBOM analysis → 
searching for 
issues

- Investigation of 
the causes
- In SBOM 

generation 
tools

- In Python 
ecosystem

Experimental Setup

- Dataset creation
- Package 

managers 
selection 

- Dependencies
selection

- SBOM 
generation tools
selection

SBOM generation

- SBOM 
generation tools 
execution
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Methodology - Experimental Setup
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SBOM Generation 
Tools

● Trivy
● Syft
● Cdxgen
● Ort

Python Package 
Managers

● Poetry
● Hatch
● Pip
● Pipenv
● Pdm



Methodology - Experimental Setup
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Methodology - Analysis

● SBOM Analysis: Manual analysis on the generated SBOMs
● Completeness → search for missing dependencies 
● Correctness → search for wrong dependencies (wrong or missing 

version)
● Investigation of the causes: 

● Code inspection of the SBOM generation tools.
● Tool documentation study.
● Community reaction assessment (e.g., Github issues analysis).
● Identification of different tools behaviours related to different 

package managers.
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Results
What do we get?



Results - Issues

Version Management Issues
Process of assigning a version to a package. If the version is explicit, the 
SBOM generation tools should detect it; otherwise, they should determine 
it.

Metadata Files Handling Issues
Metadata files management includes identifying them, parsing them, or 
using them to install dependencies in a simulated environment.
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Results - Causes
Version Management Issues

Completeness
- Missing implementation of 

solving techniques for unpinned 
dependencies.
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Correctness
- Inaccurate “guessing” 

techniques for versions.

For instance:
- In Trivy and Syft, if a dependency 

is declared without version, it is 
ignored.

For instance:
- Syft converts >= in ==
- Cdxgen converts constrained 

dependencies with  >=, in 
dependencies with latest 
version.



Results - Causes
Metadata Files Management Issues

Completeness
- Missing implementation for 

parsing a metadata file (i.e., 
Pyproject.toml, 
requirements.txt, lockfiles).

- Missing metadata file in the 
Python project.
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Correctness
- Incorrect parsing of metadata 

files.
- Not standardized format for 

metadata files.

For instance:
- Hatch does not provide a lock 

file.
- Pdm.lock is parsed only by few 

tools

For instance:
- Pipfile.lock does not report in a 

specific field the version of the 
remote dependency



Discussion
What can we conclude?



Conclusion and Discussion
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Defects in SBOM 
generation tools

- Inaccurate version-
solving techniques

- Missing parsing of 
pyproject.toml

- No warnings about 
incompleteness and 
incorrectness

Lack of standard in 
Python:

- Unpredictable 
structure of the 
projects

- Unpredictable 
structure of the 
metadata files



Recommendations

● For the Python Ecosystem:

→ It should push for initiatives proposing standards.

● For the SBOM generation tool’s developers:

→ SBOM generation tools are required to consider the 

new Python standard build interface by parsing the 

pyproject.toml file.
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Thank you for your attention

Questions?
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