
The Impact of SBOM Generators
on Vulnerability Assessment in Python: A

Comparison and a Novel Approach

Giacomo Benedetti1(B) , Serena Cofano1,2 , Alessandro Brighente3 ,
and Mauro Conti3

1 University of Genoa, Genoa, Italy
giacomo.benedetti@dibris.unige.it

2 IMT School for Advanced Studies Lucca, Lucca, Italy
serena.cofano@imtlucca.it

3 University of Padua, Padua, Italy
{alessandro.brighente,mauro.conti}@unipd.it

Abstract. The Software Supply Chain (SSC) security is a critical con-
cern for both users and developers. Recent incidents, like the SolarWinds
Orion compromise, proved the widespread impact resulting from the dis-
tribution of compromised software. The reliance on open-source com-
ponents, which constitute a significant portion of modern software, fur-
ther exacerbates this risk. To enhance SSC security, the Software Bill of
Materials (SBOM) has been promoted as a tool to increase transparency
and verifiability in software composition. However, despite its promise,
SBOMs are not without limitations. Current SBOM generation tools
often suffer from inaccuracies in identifying components and dependen-
cies, leading to the creation of erroneous or incomplete representations
of the SSC. Despite existing studies exposing these limitations, their
impact on the vulnerability detection capabilities of security tools is still
unknown.

In this paper, we perform the first security analysis on the vulnerabil-
ity detection capabilities of tools receiving SBOMs as input. We compre-
hensively evaluate SBOM generation tools by providing their outputs to
vulnerability identification software. Based on our results, we identify the
root causes of these tools’ ineffectiveness and propose PIP-sbom, a novel
pip-inspired solution that addresses their shortcomings. PIP-sbom pro-
vides improved accuracy in component identification and dependency
resolution. Compared to best-performing state-of-the-art tools, PIP-
sbom increases the average precision and recall by 60%, and reduces
by ten times the number of false positives.

Keywords: Software Bill of Materials · Vulnerability Assessment ·
Dependency Network · Software Supply Chain Security

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
M. Fischlin and V. Moonsamy (Eds.): ACNS 2025, LNCS 15826, pp. 487–509, 2025.
https://doi.org/10.1007/978-3-031-95764-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-95764-2_19&domain=pdf
http://orcid.org/0000-0003-2609-6787
http://orcid.org/0009-0006-6539-9931
http://orcid.org/0000-0001-6138-2995
http://orcid.org/0000-0002-3612-1934
https://doi.org/10.1007/978-3-031-95764-2_19

488 G. Benedetti et al.

1 Introduction

The security of the Software Supply Chain (SSC) is an increasing concern for
users and developers as reported by both ENISA [34] and the UE Executive
Order on Improving the Nation’s Cybersecurity [31]. Indeed, incidents such as
the infection of SolarWind’s Orion platform demonstrated how far-reached and
impactful the distribution of compromised software is [37]. The security of the
SSC depends on multiple factors, including, but not limited to, the use of open-
source software as dependencies included in the developed application [32]. In a
2023 study of 1,703 commercial codebases across 17 industry sectors, Synopsys
found that 96% of them leverage open-source code, and 76% of the total applica-
tion code was open-source [45]. Therefore, targeting software components, such
as libraries, allows attackers to affect a wide range of software using a single
entry point [27, 32, 33, 48].

To improve the security posture of the SSC, the Executive Order [31] pushed
the Software Bill of Materials (SBOM) as a tool to increase the transparency
and verifiability of the distributed software. According to Cybersecurity and
Infrastructure Security Agency (CISA), an SBOM is “a formal record contain-
ing the details and supply chain relationships of various components used in
building software” [17], hence providing developers and enterprises with trans-
parency in the software composition. An SBOM provides benefits for both soft-
ware suppliers and consumers, as it helps identify and avoid known vulnerabili-
ties, quantify and manage licenses, identify security and license compliance, and
manage mitigation of vulnerabilities. SBOMs are generated by automated tools
and created according to different formats, with the most common being Soft-
ware Identification (SWID) tagging, Software Package Data Exchange (SPDX),
and CycloneDx [17]. To fully leverage the information provided by SBOMs,
a plethora of tools have been developed to receive SBOM as input and pro-
vide security information [1, 6, 8, 18]. To gather information on the security of
components listed in the SBOM, these tools rely on open-source vulnerability
databases, e.g., the NVD, to map components to vulnerabilities. Software com-
ponents can be associated with different information security depending on the
database [25]. Sometimes, SBOMs can also be complemented with a Vulner-
ability Exploitability eXchange (VEX), which provides additional information
on possible specific vulnerabilities affecting software components of the SBOM.
Overall, the use of SBOMs both increases the transparency of the distributed
software and speeds up software adoption and testing. Indeed, retrieving known
vulnerabilities of the listed software components via polling a public database is
faster than running static or dynamic analysis application security testing.

Are SBOMs Improving Security? Although the premises are good, the
SBOM is not what it is expected to be for security. Most SBOM generation
tools use specification files (e.g., setup.py, gemspec, package.json) to gather the
dependency index. Other approaches are based on source or binary code parsing.

The Impact of SBOM Generators on Vulnerability Assessment in Python 489

Due to the lack of a standardized SBOM format and the limitations in the accu-
racy of existing SBOM generation tools [20], it is possible to end up with different
generated SBOMs for the same software. Indeed, the SBOM generation process
depends on the tool’s capability of correctly identifying components’ names,
versions, and dependencies. Wrongly identifying one or more of these elements
impairs the representation capabilities of the resulting SBOM [20]. Moreover,
the claims made by SBOM generation tools on their support capabilities for
different metadata file formats and their performance on real code bases are not
consistent. Indeed, different and well-known SBOM generation tools are prone
to parsing errors or inability to correctly gather all dependencies, resulting in
an SBOM that represents a subset of the entire code base [19, 22, 23, 42]. This
represents a problem not only because the SBOM does not accurately represent
the code, but also because missed key dependencies may lead to missed key secu-
rity issues. Such dependency resolution problem is still an open issue for SBOM
generation, and it is not clear how this impacts the security analysis capabilities
provided via SBOMs. Approaches such as code-centric call graph analysis and
behavioral analysis may solve this problem, however, they are highly resource
intensive [30, 38– 40].

The limitations of the currently existing SBOM generation tools and the
need for secure solutions to improve the security posture of the SSC led us to
the following research questions:

– RQ1: How much does the SBOM generation process impact the detection of
vulnerabilities in the dependency network of an SSC?
• RQ1.1: How does a specific vulnerability scanner perform when fed with

an SBOM generated by a specific state-of-the-art SBOM generation tools?
• RQ1.2: How much does an SBOM generation approach affect the perfor-

mance of a vulnerability scanner?
– RQ2: How can we improve the SBOM generation approach to achieve bet-

ter performance on the security assessment of the dependency network in an
SSC?

Contributions. In this paper, we evaluate for the first time how the representa-
tional capabilities of SBOM generation tools impact the identification of known
vulnerabilities in the SSC. Despite existing work evaluating SBOM generation
tool according to their ability to correctly identify component’s name, version,
and dependencies for Java [19], JavaScript [42], and Python [22], no existing
work evaluated their impact on the detection of security issues. As outlined in
our research questions, we expect these issues to greatly impact on the identifi-
cation of known vulnerabilities in the SSC. To this aim, we selected five of the
most relevant SBOM generation tools—i.e., cdxgen, GH-sbom, ORT, Syft, and
Trivy— for the evaluation. Since many SBOM generation tools operate on the
set of the most used programming languages (e.g., Python, JavaScript), we focus
on the Python programming language, the most popular programming language

490 G. Benedetti et al.

in 2024 according to IEEE [21]. To solve the issues of SBOM generation tools
and improve the security posture of the SSC we propose PIP-sbom, a novel
pip-based solution. Our solution overcomes the most relevant issues of SBOM
generation tool, i.e., it correctly identifies component names and versions and
can correctly report all software dependencies. We compare the performance of
our solution with that of existing state-of-the-art tools and show that the SBOM
generated with our tool drastically (64% more precise than the best performing
SBOM generation tool) increases the capabilities of identifying known vulnera-
bilities in the SSC.

We summarize our contributions as follows.

– We evaluate the capabilities of SBOM generation tools in helping increasing
the SSC security posture. By providing generated SBOMs as input to a vul-
nerability scanner tool, we evaluate each SBOM generation tool in terms of
the number of identified known vulnerabilities.

– We propose PIP-sbom, an extension for PIP to generate an SBOM directly
from the package manager, improving both usability and accuracy of the
SBOM in the Python ecosystem.

2 Background

This section provides the necessary background on the SBOM generation process
(Sect. 2.1), the dependency management and resolution for Python (Sect. 2.2),
and the usage of SBOMs by vulnerability scanners (Sect. 2.3).

2.1 SBOM Generation Process

An SBOM is generated using tools commonly known as SBOM generation tools.
Differently from Software Composition Analysis (SCA) tools, a SBOM genera-
tion tool does not analyse licenses and the security posture of components in the
software under scrutiny. However, it may be part of the SCA, providing inputs
for further analysis of the identified assets. SBOM generation tools take as input
the software’s project folder and produce a list (i.e., the SBOM) of software
components and their dependencies, along with their version and other informa-
tion useful to trace the software composition. As we focus on Python, in this
paper, we showcase the SBOM generation approach for this language. However,
the same process applies to all the other programming languages with just some
differences related to their dependency resolution process.

Python has multiple package managers that a developer can choose to deal
with dependencies and other project management operations. Each package
manager chooses how to deal with the project’s filesystem to coordinate the
dependency management. Depending on the package manager, the project may
result in very different filesystem structures.

SBOM generation tools analyze the structure of a Python package or project
and produce an SBOM. How the SBOM is generated depends on the genera-
tion approach implemented by the SBOM generation tool. Most tools rely on

The Impact of SBOM Generators on Vulnerability Assessment in Python 491

static metadata-based generation methods. However, previous research [42, 49]
reported that SBOMs have scarce accuracy when generated by tools currently
implementing this approach. Other tools, such as cdxgen, aim to reproduce an
installation environment where dependencies are collected according to metadata
files. NTIA established the minimum required elements for an SBOM [35]. Tools
such as sbom-scorecard [9] can quantify the level of compliance. However, con-
cerning vulnerability assessment, the required elements include only dependency
identifiers—i.e., name, version, and package URL (purl).

2.2 Dependencies Management in Python

A Python project should contain either a setup.py or a pyproject.toml file
to be managed by a package manager. Both these files contain the project’s
metadata and list the dependencies required to properly build and operate the
project. The project’s build produces an artifact, a wheel or source distribu-
tion, containing the source code files and all the additional files required in the
metadata file.

A distributable artifact is installed through PIP. During installation, the
dependencies listed in the metadata file are collected and installed on the user’s
system. Since transitive dependencies—i.e., dependencies of a dependency—are
not shipped together with the distributable artifact, PIP uses the resolvelib
package implementing a specific algorithm for dependency resolution [24].

Dependencies are listed in the metadata files by name and version. The
dependency’s version can be either pinned, non-pinned, or omitted—i.e., not
specified at all, in this case, the package manager collects the dependency
to the latest stable and available version. PyPI allows for multiple versioning
schemas [11], such as semantic versioning [41], calendar versioning [29], and
their combinations. The pinning vs. non-pinning choice is left to the developer
by using the ‘==’ operator vs. using range operators—i.e., <=, >=, <, >, !=.

2.3 Vulnerabilities Scanning with SBOM

In this paper, we refer to vulnerability scanner as a tool that analyzes a software
artifact and provides a security report listing potential vulnerabilities affecting
the scanned product.

Analyzing a software’s dependency network is not an easy task. Modern soft-
ware vastly relies on third-party software, resulting in the size of the dependency
network rapidly increasing. Vulnerability databases, such as NVD and OSV,
contain entries for known software vulnerabilities, making the dependency net-
work analysis easy and fast. SBOMs enable vulnerability scanners to check the
presence of known vulnerabilities without retrieving the dependency list. Cur-
rently largely used vulnerability scanners—e.g., ShiftLeftScan [8], Grype [18],
KubeClarity [6], Bomber [1]—use the SBOM as source for their analysis of depen-
dencies. They usually run a SBOM generation tool in the background and use
the generated SBOM to resolve components names and retrieve their security
information from public databases (e.g., NVD).

492 G. Benedetti et al.

Fig. 1. Example of a condensed Grype scan report for a Python SBOM.

The use of SBOMs makes the behavior of these vulnerability scanners
straightforward. They parse the SBOM collecting dependency identifiers, such
as purls, and search for a match in vulnerability databases.

In this paper, we use Grype to obtain security reports from SBOMs. A
Grype’s security report contains the following fields for each vulnerability:

– Vulnerability, information on the specific matched vulnerability (e.g. ID,
severity, CVSS score, fix information, links for more information)

– RelatedVulnerabilities, information pertaining to vulnerabilities found to be
related to the main reported vulnerability, e.g., if the tool matches a vulner-
ability on GitHub Security Advisory, also the upstream CVE is reported.

– MatchDetails, the elements matching the vulnerability, such as the version
constraints for which the vulnerability is matched.

– Artifact, information about the location of the package within the directory,
package type, licensing information, purl, CPEs, etc.

Figure 1 shows an example of a Grype’s security report for a Python SBOM.

3 Experimental Setup

In this section, we describe the setup for our evaluation methodology. At first,
Sect. 3.1 provides the process we used to gather Python projects. Section 3.2
describes our selection of SBOM generation tools based on their usage for secu-
rity evaluation and their implemented generation method. Section 5 reports the

The Impact of SBOM Generators on Vulnerability Assessment in Python 493

Fig. 2. Experimental setup design. This approach provides us the necessary data to
evaluate our research questions.

workflow applied to the collected projects to generate SBOMs and obtain their
security reports. Figure 2 depicts the overall experimental setup.

3.1 Projects Collection

Recalling from Sect. 2, Python allows the usage of multiple package managers,
each implementing its way of dealing with dependencies. Since SBOM gener-
ation tools use specific parts of a Python project to generate the SBOM, we
analyze tools’ behavior in the context of different package managers. To collect
a representative sample of projects, we extract the distribution of the package
managers used in 1,351 packages randomly selected from the whole population
list on ecosystem.ms. We discard packages that do not clearly state the package
manager in their source code repository, obtaining the distribution of package
managers shown in Table 1.

Table 1. Package Managers and Their Usage

Package Manager Packages Percentage (%)
poetry 38 6.44
pdm 9 1.53
hatch 85 14.41
pipenv 7 1.19
conda 0 0.00
setuptools 451 76.44

We collect a different sample of 1000 packages with the following process: (1)
collect a random package from the entire package population hosted on PyPI;
(2) check the package manager used by the package; (3) if we already reached the
quota of packages using that specific package manager we discard the package,

494 G. Benedetti et al.

otherwise we add the package to the sample. This process allows us to have a
sample with the same proportion of package managers identified in the previous
steps, and generalize our results to the entire package ecosystem with a 3.04%
margin of error at 95% confidence level by standard sample size calculations.

3.2 SBOM Generation Tools Selection

For the selection of SBOM generation tool we applied the following process:
(1) We manually scraped the list of tools on the CycloneDX tool center. 1 We
obtained a list of 169 open-source tools. (2) We analyzed each tool in the list
selecting those that generate SBOMs, operate on Python, and have a command
line interface. We reduce the list to 24 elements. (3) We manually tested the 24
tools to prove their utility in this work. We excluded those that do not correctly
execute, require external technologies (e.g., build-root), or were not maintained
in the last year. Eventually, we obtained a list of 5 tools: cdxgen, GH-sbom,
ORT, Syft, and Trivy.

Table 2 lists the selected SBOM generation tools, along with the implemented
generation methodology and some example vulnerability scanners making use of
them. The evaluation of the SBOMs generated by these tools for a security
assessment of the dependency network gives us the answer to RQ1.

Table 2. List of the selected SBOM generation tools. Most of them are already officially
used for dependency network security analysis. The selected tools can be also stratified
based on the implemented generation method.

SBOM Gen. Tool SBOM Gen. Met. Example Sec. An. Tool
cdxgen Environment Based Shiftleft Scan, Macaron [15]
Syft Metadata Based Grype, KubeClarity
Trivy Metadata Based KubeClarity
ORT Metadata Based NA
GH-sbom Dep. Graph Based NA

3.3 Security Report Ground Truth

A fundamental step to understand the effectiveness of SBOM generation tools in
generating an SSC description that leads to the correct identification of vulnera-
bilities, is knowing the vulnerabilities that affect a specific project. To obtain this
ground truth, we follow a multistep approach. For each package in our collected
sample we automatically: (1) retrieve the package’s project from its code repos-
itory; (2) parse metadata files to obtain optional dependency groups; (3) install
the package in a virtual environment along with both required and optional
1 https://cyclonedx.org/tool-center/.

https://cyclonedx.org/tool-center/
https://cyclonedx.org/tool-center/
https://cyclonedx.org/tool-center/
https://cyclonedx.org/tool-center/
https://cyclonedx.org/tool-center/

The Impact of SBOM Generators on Vulnerability Assessment in Python 495

dependencies; (4) generate the requirements.txt file using the pip freeze com-
mand to filter out packages installed in the virtual environment by default; (5)
pass the requirements.txt to pip-audit; (6) collect the security report. Thanks to
this manual approach, we build the list of vulnerabilities associated with each
project. A perfect SBOM generation tool will create a project representation the
leads to the correct identification of this precise set of vulnerabilities.

3.4 SBOMs and Security Reports Generation

To generate relevant SBOMs, we feed our selected SBOM generation tools with
the packages collected in our dataset. We parse SBOMs with jq [5] (a JSON
parser) to verify they have the expected format. That is we verify they do not
contain the metadata pointing out the correct analysis of the project by the
SBOM generation tool.

We selected Grype [18] as the tool for the generation of security reports.
Grype is a vastly used tool for the security analysis of projects [3, 12, 13, 47]. It
covers multiple languages—e.g., Python, Go, Rust—and artifacts—e.g., Docker
images, filesystems, SBOMs. As we do not need specific security analysis tool
for this work, the tool just needs to parse the SBOM and query vulnerability
databases for known vulnerabilities. Grype queries multiple databases, cross-
checking vulnerabilities, and hence represents a perfect choice for our purposes.

A Grype’s security report contains matches for found vulnerabilities, allowing
us to compare the set of found vulnerabilities with the set of vulnerabilities
reported in the ground truth.

4 PIP-SBOM: Our Proposed SBOM Generator

This Section describes PIP-sbom, our PIP-based approach for native generation
method. Figure 3 depicts its main steps.

PIP-sbom is designed as part of PIP, the PyPI official package manager. We
extend this specific package manager because: (1) it supports multiple front-ends
and back-ends, i.e., it can build other package manager projects, such as poetry.
(2) Both skilled and novel developers commonly use it.

PIP is internally based on modules representing the possible CLI commands
for a user. We added a module—i.e., sbom—containing the logic needed to
generate the SBOM 2. This allows developers to generate an SBOM for a Python
project with the command: pip sbom <project-path>.

PIP-sbom includes an online process and an offline process. The online pro-
cess interacts with the PyPI registry obtaining the dependency network. The
offline process builds the dependency network graph and generates the SBOM
document from a Python project.

2 PIP-sbom is the extended version of PIP, while sbom is the specific module extend-
ing PIP. Hereafter, we refer to both of them as PIP-sbom, for simplicity of language.

496 G. Benedetti et al.

Fig. 3. Design of PIP-sbom. We extend the implementation of PIP to include SBOM
generation in the build phase.

Dependency Network Solving. PIP uses the resolve-lib package dealing
with dependencies and version constraints. This package optimizes the solving
algorithm with the optimal navigation path of the dependency tree [7]. We build
upon the logic already implemented in PIP for this package to mimic the same
solving algorithm used during dependencies retrieval.

This process has a similar behavior to the download command. The project’s
dependencies are collected from PyPI and stored inside a directory specified by
the user. In our implementation, the dependencies are stored inside a temporary
directory and removed at the end of the process. This process automatically
solves version constraints similarly to the process happening during project build
and installation, providing a reliable representation of the dependency network
at installation time. When a constraint cannot be solved because of version
incompatibility, it is discarded, as would happen during the project installation.

The generation of the dependency graph is coupled with this process. We
decided to store collected dependencies as a graph to allow deeper investigation
of dependency relationships when required.

Dependency Network Graph. The dependency network is defined as a direct
unweighted graph G = (V, E). Each element n ∈ V is either a direct or tran-
sitive dependency of the input project r ∈ V . An edge (u, v) ∈ E represents a
dependency relationship between the nodes u and v. This kind of dependency is
a transitive binary relation. That is, from u → v and v → w it follows u → w.
In this case, we say that u is a transitive dependency of w.

PIP-sbom outputs the generated graph as a dot file when required through
the -g <file-name> option. The PIP-sbom internally uses the dependency
graph to generate the SBOM.

The Impact of SBOM Generators on Vulnerability Assessment in Python 497

SBOM Generation. Once the graph is complete, PIP-sbom module navigates
the graph and creates an entry in the components field of the SBOM for each
node. An entry contains: the bom-ref, dependency name, version and purl. We
include only this information because they are necessary to the vulnerability
scanner. In general, the SBOM can be enriched to comply with the minimum
required elements stated by NTIA [35].

Edges of the dependency network are used to fill the dependencies field of the
SBOM, which contains the relationship between components. When the graph
exploration ends, PIP-sbom produces a CycloneDx-compliant SBOM.

5 Evaluation Methodology

In this section, we present our methodology to answer our research questions.
The evaluation process is divided into two parts. The first looks at the accuracy
the vulnerability scanner reaches with SBOMs generated by selected SBOM
generation tools. The second looks at data specific to PIP-sbom to evaluate how
an SBOM generated with a different method affects the vulnerability scanner
performance.

RQ1: SBOM Generation Impact on Vulnerability Scanning. This
research question aims to understand to what extent the SBOM impacts the
security analysis tool output. The SBOM should accurately represent the SSC.
Thus, accurately representing the SSC is an enabling property for security anal-
ysis of the software dependency network.

RQ1.1: How does a Specific Vulnerability Scanner Perform when fed with an
SBOM Generated by a Specific State-of-the-art SBOM Generation Tools? To
answer this question, we compare the vulnerabilities identified starting from a
SBOMs against the ground truth obtained through pip-audit. We use the Jaccard
similarity index to compute the degree of overlap and commonality among the
two vulnerability sets. For each tool and each SBOM S, the process involves:
(1) collecting the security reports generated from S and extract the matched
vulnerabilities (ToolVulns); (2) getting the vulnerabilities stored in the ground
truth for the project associated with S (GrTrVulns); (3) compute the Jaccard
similarity index between ToolVulns and GrTrVulns, according to Equation (1).

J(T oolV ulns, GrT rV ulns) =
|T oolV ulns ∩ GrT rV ulns|
|T oolV ulns ∪ GrT rV ulns| (1)

RQ1.2: How much does an SBOM Generation Approach Affect the Performance
of a Vulnerability Scanner? While Jaccard similarity represents a useful metric
to assess the extent a tool suits security purposes, it cuts off details on the rea-
sons behind the tool’s performance. To obtain these missing details and answer
RQ1.2, we compute the false positives, false negatives, precision, and recall.

498 G. Benedetti et al.

Specifically, precision assesses the fraction of correctly identified vulnerabil-
ities, according to the ground truth, among all identified vulnerabilities (Eq.
(2)).

P recision =
TP

TP + FP
(2)

Recall measures the fraction of correctly identified vulnerabilities to all actual
vulnerabilities in the ground truth (Eq. (3)).

Recall =
TP

TP + FN
(3)

These metrics provide a holistic overview of the performance of each tool’s
generation method: precision addresses the trustworthiness of identified vulner-
abilities, and recall looks at the generation methods’ efficacy in allowing security
assessment to pinpoint pertinent vulnerabilities.

RQ2: A Better SBOM Generation Approach. As we later show, the main
issue with currently existing SBOM generation approaches and the resulting
poor performance of vulnerability identification approaches is that SBOM gen-
eration tools are not able to correctly identify components and their dependen-
cies. To answer RQ2 and improve the security posture of the SSC, we extend
PIP to investigate to what extent applying the same logic used in the retrieval
of dependencies during a project installation for SBOM generation is beneficial.
The extension leverages the already present download module in PIP. This mod-
ule helps to download the package’s archives without installing them. Modifying
this module by adding functional elements for SBOM generation provides us the
means for creating a novel and better approach. We provide the details of our
implementation in Sect. 4.

To evaluate the improvement in the security analysis by using a SBOM gen-
erated with our approach, we apply the same metrics used to answer RQ1.

6 Evaluation Results

In this Section, we present the results of our analysis organized by research ques-
tion. In particular, Sect. 6.1 presents the results of RQ1, while Sect. 6.2 presents
the results of RQ2.

6.1 RQ1: SBOM Impact on Vulnerability Scanning

Our findings show that the SBOMs generation approach deeply impacts the
performance of vulnerability scans. All the analyzed SBOM generation tools
cannot lead to the correct identification of all vulnerabilities in more than 20%
of cases, with the only exception of cdxgen achieving correct identification in
almost 40% of cases.

The Impact of SBOM Generators on Vulnerability Assessment in Python 499

Fig. 4. Jaccard Similarity Distributions. Each bar represents the percentage of SBOMs
that lead to identification with a certain Jaccard index range.

RQ1.1: Impact of Tools on Vulnerability Scanner Performance. The
security reports generated from state-of-the-art SBOM generation tools reveal
some shortcomings, particularly regarding thoroughness and accuracy in iden-
tifying vulnerabilities. The distribution of Jaccard similarity indexes in Fig. 4
provides a perspective of the true positive vulnerabilities found with SBOMs
generated by different tools. From the results, it is clear that SBOM generation
tools badly impact on the vulnerability scans operated by vulnerability scanners.

Among the analyzed SBOM generation tools, the one providing the best
vulnerability scan results is cdxgen. This is motivated by the fact that cdxgen
(1) installs dependencies in a virtual environment, and (2) supports most of the
package managers. These two properties result in being critical for a SBOM
generation tool for a proper representation of the SSC. Hence, all tools lacking
at least one of these two capabilities result in worse vulnerability scans.

ORT uses an approach similar to dependencies installation in a simu-
lated environment. That is, it uses an external Python module to query the
PyPI registry and obtain information on dependencies. However, its support
for package managers is limited to Poetry and Pipenv, or projects including
requirements.txt files.

SBOM generators solely relying on static metadata—i.e., Syft and Trivy—
display worse performances for vulnerability detection. This behavior is caused
by the fact that they do not install dependencies, while they have good support
for different package managers.

500 G. Benedetti et al.

Fig. 5. Precision and Recall for the vulnerability scans conducted through SBOMs
generated by each of the selected SBOM generation tools.

GH-sbom results are highly influenced by the settings applied by reposi-
tory owners. Thus, GH-sbom works only when the dependency graph feature
is enabled on the repository. However, its main issue is that it targets the last
commit on the main branch to generate the SBOM. Hence, GH-sbom cannot
acquire an SBOM for a specific commit or tag [16], causing vulnerability scan-
ners to analyze SBOMs belonging to code different from the targeted one.

Takeaway Current state-of-the-art SBOM generation tools are not
suitable to generate SBOMs for the proper vulnerability assessment of
Python projects.

RQ1.2: Causes of Tool Impact on Vulnerability Scanner. While the Jac-
card similarity represents how much the SBOM generation approach impacts the
vulnerability scan results, precision and recall measurements give us information
on the factors influencing the security evaluation. Referring back to Sect. 5, recall
is the fraction of correctly identified vulnerabilities to all actual vulnerabilities
in the ground truth. Precision is the fraction of correctly identified vulnerabili-
ties, according to the ground truth, among all identified vulnerabilities. Figure 5
shows the precision and recall values for the analyzed SBOM generation tools.

The Impact of SBOM Generators on Vulnerability Assessment in Python 501

Fig. 6. False Positives and False Negatives by Tool

All the tools show low precision and recall average values, with cdxgen leading
the group with 0.17 and 0.21 average precision and recall, respectively.

As shown in Fig. 6, the analyzed tools have a very high number of false
positives, while false negatives are present in a more manageable magnitude.
For example, 99.5% (978 FP/5 FN) of the misclassified vulnerabilities are false
positives for cdxgen and 97.8% (926 FP/21 FN) for Syft. While an overestimation
is generally considered better than losing vulnerabilities [2, 4, 14], these numbers
are out-of-scale, causing burdening during vulnerability investigation.

By randomly sampling projects with at least a false positive we identified the
following reasons:

1. The SBOM list dependencies that are not collected during installation,
2. the vulnerability is reported with a vulnerability identifier different from the

one in the ground truth

The first reason is caused by the presence of metadata files inside of projects
listing dependencies that are not actually collected during installation. By analy-
sing the dependencies contained in the SBOMs we confirm that on average 75%
of the dependencies listed in the SBOMs are not actually installed. When a pack-
age is built only the files specified inside of the metadata file are included in the
package (see Sect. 2.2). Those are the dependencies that the package manager
collects during the installation. This misalignment between files listing depen-
dencies, and files used for installing dependencies, causes SBOM generation tools
to generate a huge amount of false positives during vulnerability scanning.

The second reason is linked to a limitation of our methodology (see Sect. 8)
and affects a limited number of vulnerabilities making it negligible. However, it

502 G. Benedetti et al.

highlights the problem of using vulnerability databases as the source for vulner-
ability scanning. These databases may be partially out-of-date, or experiencing
problems in the collection of security advisories. Recently NVD had trouble col-
lecting CVEs for a long time, causing many issues for tools relying on such
database [36].

Takeaway (1) SBOM generation tools do not properly support multi-
ple package managers. (2) SBOM generation tools do not consider how
dependencies are actually collected by Python’s package managers.

6.2 RQ2: Trying a Different SBOM Generation Method

Table 3. Comparison of average values for Jaccard similarity, Precision, and Recall
for PIP-sbom against state-of-the-art tools.

cdxgen ORT Syft Trivy GH-sbom PIP-sbom

Jaccard Similarity 49.77% 36.50% 26.33% 23.63% 23.98% 78.39%
Avg Precision 17.08% 16.31% 12.39% 12.17% 5.57% 80.95%
Avg Recall 21.42% 19.93% 15.61% 14.01% 8.10% 80.26%
F. Poss./F. Negs. 978/5 449/10 926/21 893/21 2793/29 47/3

Implementing PIP-sbom, a PIP extension using the dependency resolution algo-
rithm native to the package manager, we drastically improve the vulnerability
assessment of the dependency network. As Table 3 reports, almost 80% of the
vulnerability reports match the ground truth. No one of the analyzed pre-existing
tools is able to provide the same performance.

PIP-sbom achieves a 64% increase in precision and a 59% improvement in
recall for vulnerability scans, outperforming the best-performing existing tool.

Having a limited delta between average precision (80.95%) and recall
(80.26%), our proposed tool allows a vulnerability scanner to effectively identify
vulnerabilities in the dependency network requiring a limited manual effort to
discard false positive vulnerabilities. Thus, it has only 47 false positive vulnera-
bilities. While the false negative vulnerabilities have the same magnitude as the
other SBOM generation tools, false positives are way lower than other tools. By
providing developers with a manageable number of vulnerabilities to check, we
want to push towards the adoption of SBOMs as a useful means for security.

Concerning projects’ security assessment differing from the ground truth:
We manually reviewed these differences, and all of them are due to issues with
vulnerability identifiers (See Sect. 8 for details).

The Impact of SBOM Generators on Vulnerability Assessment in Python 503

Takeaway PIP can be extended by re-using most of its code to gen-
erate an SBOM that drastically improves the vulnerability assessment
results.

7 Discussion

SBOM generation is a hard problem. Since software is usually constructed on
third-party components, having a complete and correct SBOM represents a great
improvement for security, and many other aspects of software usage—e.g., licens-
ing. Using SBOM as input for vulnerability scanners speeds up the analysis of the
software’s dependency network, also providing clear information on the vulner-
able dependencies and their transitive dependencies. However, state-of-the-art
tools do not provide SBOMs that can be efficiently used for vulnerability assess-
ment in the Python ecosystem.

We identified two main causes for this problem:

1. SBOM generation tools do not provide support for the high number of package
managers used for Python projects.

2. They do not correctly build the dependency network.

However, it is possible to greatly improve the current situation, without much
of an effort. Since dependencies are collected by package managers, using them
for SBOM generation represents an efficient approach. We tested this native
generation method by implementing it in PIP.

7.1 Implications

Our results can be interpreted in two ways:

– Developers currently relying on tools like shiftleft scan or Grype are missing
out most of the actual vulnerabilities in the dependencies of the analyzed
software.

– The problems affecting the SBOM generation tools can be easily solved by
adding just some changes to package managers. Once the SBOM is correctly
generated, it greatly benefits the vulnerability assessment.

These implications can be easily transferred to other languages and ecosys-
tems. Most sofware ecosystems do not support provenance and SBOM genera-
tion. According to OpenSSF only npm ships the generation of SBOM for the
hosted packages, while only npm and homebrew provide provenance informa-
tion [44].

On the other hand, having a proper SBOM enables great result in the vulner-
ability assessment. With just a few changes to the package manager, the SBOM
can be shipped with a project.

504 G. Benedetti et al.

7.2 Recommendations
Our recommendations are addressed to communities of software ecosystems.
There is a need to include SBOMs as part of projects by default. Thanks to
our proposal, we showed that this is a possible and easily achievable goal. The
following recommendations may help those communities:
– Using centralized SBOM may provide a common knowledge base, easily acces-

sible, and distributed for all developers. GH-sbom provides such a feature,
however, it is not always supported and it is limited to providing SBOM for
the latest commit on the main branch. Fostering discussion on having such a
powerful tool may relieve some of the efforts on the single communities.

– Push for a standard set of files to list the dependencies installed in a
project. Most ecosystems already use this approach, for example, npm
(package.json), and Cargo (Cargo.toml). Multiple data sources may be
confusing and can introduce unexpected dependencies and associated vulner-
abilities.

– Work for a SBOM generation tool implemented inside of the ecosystem pack-
age manager(s). As we showed, SBOM generation can largely be improved by
using a native generation method. SBOMs can benefit from ecosystem-specific
information that may improve SSC transparency for that specific ecosystem.

8 Threats to Validity

Projects Collection. Our sample can be generalized to the whole package popu-
lation on PyPI, with the margin of error stated in Sect. 3.1. While it is relevant
because of generalization, it may miss specific corner cases providing insightful
knowledge. We internally cross-validated the sample with other random samples
taken from PyPI without filtering on package managers. The cross-validation
confirmed the accuracy of our results with an error of ±2%.

SBOM Generation Tools Selection. The selection is manually conducted by fil-
tering SBOM generation tools based on the criteria discussed in Sect. 3.2. The
list of tools has been reviewed by more than one author, and we agreed on
the five selected tools. However, a degree of subjectivity would be present in
the selection, leading to the exclusion of other potentially effective tools. We
tested the tools that were eligible for our study and excluded the ones that were
not functional for our research goals. The manual testing may have caused the
exclusion of potentially effective tools.

Ground Truth. The reliance on pip-audit for establishing the ground truth intro-
duces potential limitations, as this tool may not detect all relevant vulnerabili-
ties, which could impact the baseline used for comparing other tools. pip-audit
is largely used to detect vulnerabilities in the dependency installed inside of an
environment. However, it is subject to vulnerability databases as well as vul-
nerability scanners. Since our measurements with Grype were conducted at the
same time as the ground truth generation, we argue that any potential gap was
avoided.

The Impact of SBOM Generators on Vulnerability Assessment in Python 505

Evaluation Methodology. We experienced false positives and negatives while
evaluating vulnerability scan results. Some are due to a missing vulnerability
identifier inside the vulnerability scan result. These errors can be easily fixed
by establishing a unique vulnerability database mapping vulnerabilities to their
identifiers on the various databases. We manually fixed the issue in our dataset
since such an event is rare.

Evaluation Scope. The methodology and results are tailored to Python, while
we consider these results extensible to other languages, we cannot state their
transferability. Our study wants to raise concerns about the reliability of current
SBOM generation tools for security analysis of dependency networks, and to push
on the development of native SBOM generation method by package managers.

9 Related Works

Research produced a large amount of literature on SBOM in the last period.
Related to this work, it can be divided into two categories: research on (1)
technical challenges and (2) adoption.

Technical Challenges. Yu et al. [49] conduct a differential analysis examining
the correctness of SBOMs generated by four SBOM generation tools. The anal-
ysis is conducted over seven program languages. They highlight how the SBOM
generation tools have difficulties to correctly finding dependencies.

Torres-Arias et al. [46] conduct a study on the fulfilment of minimum required
elements issued by NTIA [35] for SBOMs using the SPDX standard. Similarly,
Halbritter and Merli [28] do the same for CycloneDX SBOMs.

Balliu et al. [19] focus on the Java ecosystem with the analysis of the SBOM
generated for a known Java application. They provide an overview of the chal-
lenges that SBOM generation tools face to generate an SBOM on Java projects.
Similarly, Rabbi et al. [42] focus on the npm ecosystem. Cofano et al. [22] con-
duct a study on the relationship between the Python ecosystem and four SBOM
generation tools. They identify challenges posed by the ecosystem and an excess
of approximation by the SBOM generation tools. All these works do not look at
the impact of the generated SBOM. Differently, we focused on the usage of the
SBOM to understand to what extent this technology can be effectively adopted.

SBOM Adoption. While the SBOM represents a resource for SSC transparency,
enabling both functional and security testing, its adoption is delayed. The effi-
cacy of SBOM for security has been recently reported by Sharma et al. [43].
They propose a technology using SBOM to mitigate vulnerabilities affecting
Java applications.

Enck et al. [26] report that the use of SBOM for security is debated among
practitioners. More than a year later the landscape is not brighter. Zahan et
al. [50] report that attended of the S3C2 [10] Industry Summit were sceptical
about the adoption of SBOM. The problems come from including SBOM gen-
eration in the CI/CD pipeline, however, it has been suggested to embed SBOM

506 G. Benedetti et al.

generation within the build template as part of a standardized build pipeline and
making SBOM generation a mandatory task when setting up CI/CD templates.
We show that this approach can be easily adopted without breaking the build
process, at least concerning the Python ecosystem.

10 Conclusion and Future Work

This study shows how SBOM generation heavily affects vulnerability scans of
software. The current state-of-the-art SBOM generation tools cannot provide
SBOMs accurate enough for vulnerability scanner to identify more than 20%
of the vulnerabilities actually present in the software. This problem is due to
the lack of support for Python and the techniques adopted to solve versions of
Python project dependencies. We proposed PIP-sbom, a proof of concept imple-
mentation extending PIP to generate an SBOM directly from the Python pack-
age manager. The performances provided by our PoC for vulnerability assess-
ment suggest that using native resources of the ecosystem—e.g., the package
manager—to generate the SBOM may largely improve the overall security pos-
ture of software.

Some future works in this direction can support the generation of SBOM in
different software ecosystems. Moreover, research in the use of SBOM for security
should provide further elements to push software communities and developers to
adopt this technology.

Acknowledgments. This work was supported by the European Commission under
the Horizon Europe Programme, as part of the project LAZARUS (https://lazarus-he.
eu/) (Grant Agreement no. 101070303). This work was partially supported by project
SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded
by the European Union - NextGenerationEU.

Data Availability Statement. The list of projects, ground truth, generated SBOMs,
security reports, and scripts to replicate our results can be found in our external
resources at https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad.

References

1. bomber: Scans software bill of materials (SBOMs) for security vulnerabilities
2. False negative. https://www.contrastsecurity.com/glossary/false-negative.

Accessed 5 Sep 2024
3. Grype. https://www.cisa.gov/resources-tools/services/grype. Accessed 5 Sep 2024
4. Intrusion detection. https://owasp.org/www-community/controls/Intrusion_

Detection. Accessed 5 Sep 2024
5. jqlang/jq: Command-line JSON processor. https://github.com/jqlang/jq. Accessed

5 Sep 2024
6. kubeClarity: KubeClarity is a tool for detection and management of software bill

of materials (SBOM) and vulnerabilities of container images and filesystems

https://lazarus-he.eu/
https://lazarus-he.eu/
https://lazarus-he.eu/
https://lazarus-he.eu/
https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad
https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad
https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad
https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad
https://osf.io/9agz7/?view_only=1c4704de735b46de8595c40dfa4fb1ad
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.contrastsecurity.com/glossary/false-negative
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://www.cisa.gov/resources-tools/services/grype
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://owasp.org/www-community/controls/Intrusion_Detection
https://github.com/jqlang/jq
https://github.com/jqlang/jq
https://github.com/jqlang/jq
https://github.com/jqlang/jq
https://github.com/jqlang/jq

The Impact of SBOM Generators on Vulnerability Assessment in Python 507

7. resolvelib. https://pypi.org/project/resolvelib/. Accessed 5 Sep 2024
8. sast-scan: Scan is a free & open source DevSecOps tool for performing static anal-

ysis based security testing of your applications and its dependencies. CI and git
friendly

9. SBOM-scorecard: Generate a score for your SBOM to understand if it will actually
be useful

10. Secure software supply chain center. https://s3c2.org/
11. Versioning - python packaging user guide. https://packaging.python.org/en/latest/

discussions/versioning/. Accessed 3 Sep 2024
12. Why chainguard uses grype as its first line of defense for CVEs. https://

www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-
defense-for-cves. Accessed 5 Sep 2024

13. Using grype to scan container images for vulnerabilities. https://edu.chainguard.
dev/chainguard/chainguard-images/working-with-images/scanners/grype-
tutorial/ (Jan 1). Accessed 5 Sep 2024

14. False positives and false negatives in information security. https://www.
guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
(2022). Accessed 5 Sep 2024

15. Macaron: A Logic-based Framework for Software Supply Chain Security Assur-
ance. In: Proceedings of the 2023 Workshop on Software Supply Chain Offensive
Research and Ecosystem Defenses, pp. 29–37. ACM, Copenhagen Denmark (2023).
https://doi.org/10.1145/3605770.3625213

16. Dependency Graph SBoM export for older repository versions? (2024). https://
github.com/orgs/community/discussions/118612

17. Agency, C..I.S.: SBOM FAQ (2024). https://www.cisa.gov/resources-tools/
resources/sbom-faq

18. Anchore: Grype. https://github.com/anchore/grype/
19. Balliu, M., et al.: Challenges of producing software bill of materials for java. IEEE

Security & Privacy (2023)
20. Bi, T., Xia, B., Xing, Z., Lu, Q., Zhu, L.: On the way to SBOMs: investigating

design issues and solutions in practice. ACM Trans. Softw. Eng. Methodol. 33(6),
1–25 (2024)

21. Cass, S.: The Top Programming Languages 2024 (2024). https://spectrum.ieee.
org/ibm-quantum-computer-2668978269

22. Cofano, S., Benedetti, G., Dell’Amico, M.: SBOM Generation Tools in the Python
Ecosystem: an In-Detail Analysis (2024). https://arxiv.org/abs/2409.01214

23. Deepbits: Evaluating and Benchmarking SBOM Generators: A Systematic App-
roach (2023). https://www.deepbits.com/whitepaper/1

24. pip developers: More on Dependency Resolution (2024). https://pip.pypa.io/en/
stable/topics/more-dependency-resolution/

25. Dietrich, J., Rasheed, S., Jordan, A., White, T.: On the security blind spots of
software composition analysis (2023)

26. Enck, W., Williams, L.: Top five challenges in software supply chain security: obser-
vations from 30 industry and government organizations. IEEE Secur. Priv. 20(2),
96–100 (2022)

27. Guo, W., Xu, Z., Liu, C., Huang, C., Fang, Y., Liu, Y.: An empirical study of mali-
cious code in PyPI ecosystem. In: 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 166–177. IEEE (2023)

28. Halbritter, A., Merli, D.: Accuracy evaluation of SBOM tools for web applications
and system-level software. In: Proceedings of the 19th International Conference on
Availability, Reliability and Security. ACM, New York, NY, USA (2024)

https://pypi.org/project/resolvelib/
https://pypi.org/project/resolvelib/
https://pypi.org/project/resolvelib/
https://pypi.org/project/resolvelib/
https://pypi.org/project/resolvelib/
https://s3c2.org/
https://s3c2.org/
https://s3c2.org/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://packaging.python.org/en/latest/discussions/versioning/
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://www.chainguard.dev/unchained/why-chainguard-uses-grype-as-its-first-line-of-defense-for-cves
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/working-with-images/scanners/grype-tutorial/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://github.com/orgs/community/discussions/118612
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://www.cisa.gov/resources-tools/resources/sbom-faq
https://github.com/anchore/grype/
https://github.com/anchore/grype/
https://github.com/anchore/grype/
https://github.com/anchore/grype/
https://github.com/anchore/grype/
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://spectrum.ieee.org/ibm-quantum-computer-2668978269
https://arxiv.org/abs/2409.01214
https://arxiv.org/abs/2409.01214
https://arxiv.org/abs/2409.01214
https://arxiv.org/abs/2409.01214
https://arxiv.org/abs/2409.01214
https://arxiv.org/abs/2409.01214
https://www.deepbits.com/whitepaper/1
https://www.deepbits.com/whitepaper/1
https://www.deepbits.com/whitepaper/1
https://www.deepbits.com/whitepaper/1
https://www.deepbits.com/whitepaper/1
https://www.deepbits.com/whitepaper/1
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/
https://pip.pypa.io/en/stable/topics/more-dependency-resolution/

508 G. Benedetti et al.

29. Hashemi, M.: Calendar versioning – CalVer. https://calver.org/. Accessed 3 Sep
2024

30. Hejderup, J., Beller, M., Triantafyllou, K., Gousios, G.: Präzi: from package-based
to call-based dependency networks. Empirical Softw. Eng. 27 (2022). https://doi.
org/10.1007/s10664-021-10071-9

31. JR., J.R.B.: Executive Order on Improving the Nation’s Cybersecurity (2021).
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/

32. Ladisa, P., Plate, H., Martinez, M., Barais, O.: Sok: taxonomy of attacks on open-
source software supply chains. In: 2023 IEEE Symposium on Security and Privacy
(SP), pp. 1509–1526. IEEE (2023)

33. Merrill, K., Newman, Z., Torres-Arias, S., Sollins, K.R.: Speranza: usable, privacy-
friendly software signing. In: Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pp. 3388–3402 (2023)

34. Network, E., Agency, I.S.: Enisa threat landscape 2021 (2021). https://www.enisa.
europa.eu/publications/enisa-threat-landscape-2021

35. NTIA: The minimum elements for a software bill of materials (SBOM)
36. Ozkan, S.: NVD leaves thousands of vulnerabilities without analysis data

(2024). https://securityscorecard.com/blog/national-vulnerability-database-nvd-
leaves-thousands-of-vulnerabilities-without-analysis-data/

37. Peisert, S., et al.: Perspectives on the solarwinds incident. IEEE Secur. Priv. 19(2),
7–13 (2021)

38. Plate, H., Ponta, S.E., Sabetta, A.: Impact assessment for vulnerabilities in open-
source software libraries. In: 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 411–420 (2015). https://doi.org/10.
1109/ICSM.2015.7332492

39. Ponta, S.E., Plate, H., Sabetta, A.: Beyond metadata: code-centric and usage-
based analysis of known vulnerabilities in open-source software. In: 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
449–460 (2018). https://doi.org/10.1109/ICSME.2018.00054

40. Ponta, S.E., Plate, H., Sabetta, A.: Detection, assessment and mitigation of vulner-
abilities in open source dependencies. Empirical Softw. Eng. 25, 3175–3215 (2020).
https://doi.org/10.1007/s10664-020-09830-x

41. Preston-Werner, T.: Semantic versioning 2.0.0. https://semver.org/. Accessed 3
Sep 2024

42. Rabbi, M.F., Champa, A.I., Nachuma, C., Zibran, M.F.: SBOM generation tools
under microscope: a focus on the NPM ecosystem. In: Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing, pp. 1233–1241 (2024)

43. Sharma, A., Wittlinger, M., Baudry, B., Monperrus, M.: Sbom.exe: Countering
dynamic code injection based on software bill of materials in java (2024). https://
arxiv.org/abs/2407.00246

44. Steindler, Z.: How to Make Programming Language Package Repositories More
Secure (2024). https://openssf.org/blog/2024/07/31/how-to-make-programming-
language-package-repositories-more-secure/

45. Synopsis: 2023 OSSRA report. https://www.synopsys.com/content/dam/
synopsys/sig-assets/reports/rep-ossra-2023.pdf

46. Torres-Arias, S., Geer, D., Meyers, J.S.: A viewpoint on knowing software: bill of
materials quality when you see it. IEEE Secur. Priv. 21(6), 50–54 (2023)

47. Wallen, J.: Scan container images for vulnerabilities with grype. https://
thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/ (2022).
Accessed 5 Sep 2024

https://calver.org/
https://calver.org/
https://calver.org/
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://securityscorecard.com/blog/national-vulnerability-database-nvd-leaves-thousands-of-vulnerabilities-without-analysis-data/
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://semver.org/
https://semver.org/
https://semver.org/
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://openssf.org/blog/2024/07/31/how-to-make-programming-language-package-repositories-more-secure/
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/
https://thenewstack.io/scan-container-images-for-vulnerabilities-with-grype/

The Impact of SBOM Generators on Vulnerability Assessment in Python 509

48. Wermke, D., et al.: “always contribute back”: a qualitative study on security chal-
lenges of the open source supply chain. In: 2023 IEEE Symposium on Security and
Privacy (SP), pp. 1545–1560. IEEE (2023)

49. Yu, S., Song, W., Hu, X., Yin, H.: On the correctness of metadata-based SBOM
generation: a differential analysis approach. In: 2024 54th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 29–
36 (2024). https://doi.org/10.1109/DSN58291.2024.00018

50. Zahan, N., et al.: S3C2 summit 2023-11: Industry secure supply chain summit
(2024)

https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018
https://doi.org/10.1109/DSN58291.2024.00018

	The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach
	1 Introduction
	2 Background
	2.1 SBOM Generation Process
	2.2 Dependencies Management in Python
	2.3 Vulnerabilities Scanning with SBOM

	3 Experimental Setup
	3.1 Projects Collection
	3.2 SBOM Generation Tools Selection
	3.3 Security Report Ground Truth
	3.4 SBOMs and Security Reports Generation

	4 PIP-sbom: Our Proposed SBOM Generator
	5 Evaluation Methodology
	6 Evaluation Results
	6.1 RQ1: SBOM Impact on Vulnerability Scanning
	6.2 RQ2: Trying a Different SBOM Generation Method

	7 Discussion
	7.1 Implications
	7.2 Recommendations

	8 Threats to Validity
	9 Related Works
	10 Conclusion and Future Work
	References

